Constructing Lightweight Optimal Diffusion Primitives with Feistel Structure

نویسندگان

  • Zhiyuan Guo
  • Wenling Wu
  • Si Gao
چکیده

As one of the core components in any SPN block cipher and hash function, diffusion layers are mainly introduced by matrices with maximal branch number. Surprisingly, the research on optimal binary matrices is rather limited compared with that on MDS matrices. Especially, not many general constructions for binary matrices are known that give the best possible branch number and guarantee the efficient software/hardware implementations as well. In this paper, we propose a new class of binary matrices constructed by Feistel structure with bit permutation as round functions. Through investigating bounds on the branch number our structure can achieve, we construct optimal binary matrices for a series of parameters with the lowest hardware cost up to now. Compared to the best known results, our optimal solutions for size 16 × 16 and 32 × 32 can save about 20% and 33.3% gate equivalents respectively. Without loss of hardware efficiency, a list of softwarefriendly optimal binary matrices can be constructed by Feistel structure with cyclic shift as round functions. The characteristics of this class of matrices are summarized and involutory optimal instances with commonly used dimensions are also provided. In the case of 8× 8, we prove that optimal matrices from our structure can not be involutory. Finally, we extend the strategy to Generalized Feistel Structure and present some typical experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives

Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...

متن کامل

Diffusion Behaviour of Cryptographic Primitives in Feistel Networks

The concept of product encryption is resident in the majority of symmetric block ciphers. Along with product encryption, two properties were also defined by Shannon, namely diffusion and confusion. In a product cipher such as a Feistel Network (FN), or generally a Substitution Permutation Network (SPN), diffusion is dependent upon two types of primitives, the nonlinear transformation and the sw...

متن کامل

LHash: A Lightweight Hash Function (Full Version)

In this paper, we propose a new lightweight hash function supporting three different digest sizes: 80, 96 and 128 bits, providing preimage security from 64 to 120 bits, second preimage and collision security from 40 to 60 bits. LHash requires about 817 GE and 1028 GE with a serialized implementation. In faster implementations based on function T , LHash requires 989 GE and 1200 GE with 54 and 7...

متن کامل

Quasigroup representation of some lightweight block ciphers

Most of the lightweight block ciphers are build as S-P networks or Feistel networks, their generalization or variations. We represent the lightweight Feistel ciphers GOST and MIBS, and Generalized Feistel cipher Skipjack by quasigroup string transformations. For obtaining suitable representation we use the fact that Feistel round functions that are bijections can be considered as orthomorphisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015